

2. Technical data

2.1 Curves

NB310L Residual Current Operated Circuit Breaker with over-current protection (Magnetic)

1. General

1.1 Function

Personnel and fire protection: Cable and line protection against overload and short-circuits.

1.2 Selection

Rated residual operating current

$\mathrm{I} \mathrm{n}=30 \mathrm{~mA}$: additional protection in the case of direct contact.

Tripping class

A class

Tripping is ensured for sinusoidal, alternating
residual currents as well as for pulsed DC residual currents, whether they be quickly applied or slowly increase.

Tripping curve

B curve (3-5 In) protection and control of the circuits against overloads and short-circuits; protection for people and big length cables in TN and IT systems. C curve (5-10 In) protection and control of the circuits against overloads and short-circuits; protection for resistive and inductive loads with low inrush current.
Kcurve (5-10 In) protection and control of the circuits against overloads and short-circuits; protection for resistive and inductive loads with low inrush current. $I 2$ value reduced ($\mathrm{I} \mathrm{n}=1,3$)

1.3 Approvals and certificates

Detailed information, please refer to Certificates Table on the last page.

2.2

	Standard		IEC/EN 61009-1
Electrical features	Type (wave form of the earth leakage sensed)		A
	Thermo-magnetic release characteristic		B, C
	Rated current In	A	6, 10, 13, 16, 20, 25, 32
	Poles		2 P
	Rated voltage Ue	V	230/240
	Rated sensitivity I \triangle n	A	0.03
	Rated residual making and breaking capacity $1 \Delta \mathrm{~m}$	A	3000
	Rated short-circuit capacity Icn	A	6,000
	Break time under $\mathrm{I} \triangle \mathrm{n}$	s	$\leqslant 0.1$
	Rated frequency	Hz	50/60
	Rated impulse withstand voltage (1.2/50)Uimp	V	6,000
	Dielectric TEST voltage at ind. Freq. for 1 min	kV	2
	Insulation voltage Ui		500
	Pollution degree		2
Mechanical features	Electrical life		2,000
	Mechanical life		2,000
	Contact position indicator		Yes
	Protection degree		IP20
	Ambient temperature (with daily average $\leqslant 35^{\circ} \mathrm{C}$)	${ }^{\circ} \mathrm{C}$	$-5 \ldots+40$
	Storage temperature	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$
Installation	Terminal connection type		Cable/U-type busbar/Pin-type busbar
	Terminal size top/bottom for cable	mm^{2}	25
		AWG	18-3
	Terminal size top/bottom for busbar	mm^{2}	10
		AWG	18-8
	Tightening torque	$N \cdot m$	2
		In-Ibs.	18
	Mounting		On DIN rail EN 60715 (35mm) by means of fast clip device
	Connection		From top and bottom

2.3 Temperature derating

The maximum permissible current in a circuit breaker depends on the ambient temperature where the circuit breaker is placed. Ambient temperature is the temperature inside the enclosure or switchboard in which the circuit breakers are installed.
The reference temperature is $30^{\circ} \mathrm{C}$

Temperature	$\mathbf{- 1 0}{ }^{\circ} \mathrm{C}$	$\mathbf{0}^{\circ} \mathrm{C}$	$\mathbf{1 0}{ }^{\circ} \mathrm{C}$	$\mathbf{2 0}{ }^{\circ} \mathrm{C}$	$\mathbf{3 0}^{\circ} \mathrm{C}$	$\mathbf{4 0}{ }^{\circ} \mathrm{C}$	$\mathbf{5 0}{ }^{\circ} \mathrm{C}$	$\mathbf{6 0}{ }^{\circ} \mathrm{C}$
Temperature compensation coefficient of rated current	1.20	1.15	1.10	1.05	1.00	0.95	0.90	0.85

3. Overall and mounting dimensions (mm)

